Private Documentation
This page documents private functions which may be useful but which have no guarantee of stability across any change in versions of this package.
Contents
Generic utilities
CMB.quadprod — Methodquadprod(A::AbstractSparseMatrixCSC, b::AbstractVecOrMat, n::Integer)Computes the quadratic product $ABA^\top$ efficiently for the case where $B$ is all zero except for a small number of columns b starting at the nth.
Sphere Functions
CMB.Sphere.x̂ — Constantconst x̂ = SVector(1, 0, 0)
const ŷ = SVector(0, 1, 0)
const ẑ = SVector(0, 0, 1)Constant unit vectors in the Cartesian directions.
CMB.Sphere.ŷ — Constantconst x̂ = SVector(1, 0, 0)
const ŷ = SVector(0, 1, 0)
const ẑ = SVector(0, 0, 1)Constant unit vectors in the Cartesian directions.
CMB.Sphere.ẑ — Constantconst x̂ = SVector(1, 0, 0)
const ŷ = SVector(0, 1, 0)
const ẑ = SVector(0, 0, 1)Constant unit vectors in the Cartesian directions.
CMB.Sphere.:∥ — Method∥(u, v) -> BoolTest whether vector $u$ is parallel to vector $v$. Assumes that both are unit normalized.
CMB.Sphere.cartvec — Methodr = cartvec(θ, ϕ)
r = cartvec((θ, ϕ))Converts the colatitude-azimuth pair $(θ, ϕ)$ to a Cartesian unit vector $r$.
CMB.Sphere.colataz — Methodθ, ϕ = colataz(δ, λ)
θ, ϕ = colataz((δ, λ))Converts the latitude-longitude pair $(δ, λ)$ in degrees to colatitude-azimuth $(θ, ϕ)$ in radians.
CMB.Sphere.colataz — Methodθ, ϕ = colataz(r)Converts the Cartesian unit vector $r$ to a colatitude-azimuth pair $(θ, ϕ)$ in radians.
CMB.Sphere.latlon — Methodδ, λ = latlon(θ, ϕ)
δ, λ = latlon((θ, ϕ))Converts the colatitude-azimuth pair $(θ, ϕ)$ in radians to latitude-longitude $(δ, λ)$ in radians.
CMB.Sphere.latlon — Methodδ, λ = latlon(r)Converts the Cartesian unit vector $r$ to a latitude-longitude pair $(δ, λ)$ in degrees.