Private Documentation
Legendre.Plm_00 — FunctionPlm_00(::N, ::Type{T}) where {N<:AbstractLegendreNorm, T}Returns the initial condition $P_0^0(x)$ for the associated Legendre recursions based on the normalization choice N for numeric type T.
Legendre.Plm_α — FunctionPlm_α(norm::N, ::Type{T}, l::Integer, m::Integer) where {N<:AbstractLegendreNorm, T}Returns the coefficient $α_ℓ^m$ for the two-term recursion relation
where $α_ℓ^m$ is appropriate for the choice of normalization N.
Legendre.Plm_β — FunctionPlm_β(norm::N, ::Type{T}, l::Integer, m::Integer) where {N<:AbstractLegendreNorm, T}Returns the coefficient $β_ℓ^m$ for the two-term recursion relation
where $β_ℓ^m$ is appropriate for the choice of normalization N.
Legendre.Plm_μ — FunctionPlm_μ(norm::N, ::Type{T}, l::Integer) where {N<:AbstractLegendreNorm, T}Returns the coefficient $μ_ℓ$ for the single-term recursion relation
where $μ_ℓ$ is appropriate for the choice of normalization N.
Legendre.Plm_ν — FunctionPlm_ν(norm::N, ::Type{T}, l::Integer) where {N<:AbstractLegendreNorm, T}Returns the coefficient $ν_ℓ$ for the single-term recursion relation
where $ν_ℓ$ is appropriate for the choice of normalization N.