Private Documentation
Legendre.Plm_00
— FunctionPlm_00(::N, ::Type{T}) where {N<:AbstractLegendreNorm, T}
Returns the initial condition $P_0^0(x)$ for the associated Legendre recursions based on the normalization choice N
for numeric type T
.
Legendre.Plm_α
— FunctionPlm_α(norm::N, ::Type{T}, l::Integer, m::Integer) where {N<:AbstractLegendreNorm, T}
Returns the coefficient $α_ℓ^m$ for the two-term recursion relation
where $α_ℓ^m$ is appropriate for the choice of normalization N
.
Legendre.Plm_β
— FunctionPlm_β(norm::N, ::Type{T}, l::Integer, m::Integer) where {N<:AbstractLegendreNorm, T}
Returns the coefficient $β_ℓ^m$ for the two-term recursion relation
where $β_ℓ^m$ is appropriate for the choice of normalization N
.
Legendre.Plm_μ
— FunctionPlm_μ(norm::N, ::Type{T}, l::Integer) where {N<:AbstractLegendreNorm, T}
Returns the coefficient $μ_ℓ$ for the single-term recursion relation
where $μ_ℓ$ is appropriate for the choice of normalization N
.
Legendre.Plm_ν
— FunctionPlm_ν(norm::N, ::Type{T}, l::Integer) where {N<:AbstractLegendreNorm, T}
Returns the coefficient $ν_ℓ$ for the single-term recursion relation
where $ν_ℓ$ is appropriate for the choice of normalization N
.